"Whole Building" Performance Metrics for Commercial Buildings

Kim M. Fowler

Chief Research Engineer

Sustainable Design and Development

Pacific Northwest National Laboratory

Phone: 509-372-4233

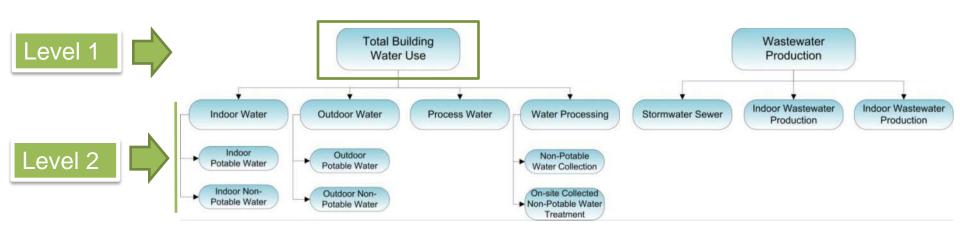

Email: kim.fowler@pnl.gov

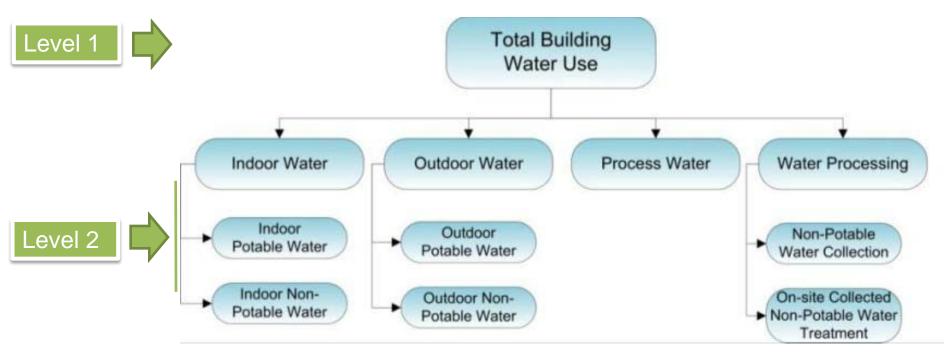
November 17th, 2010

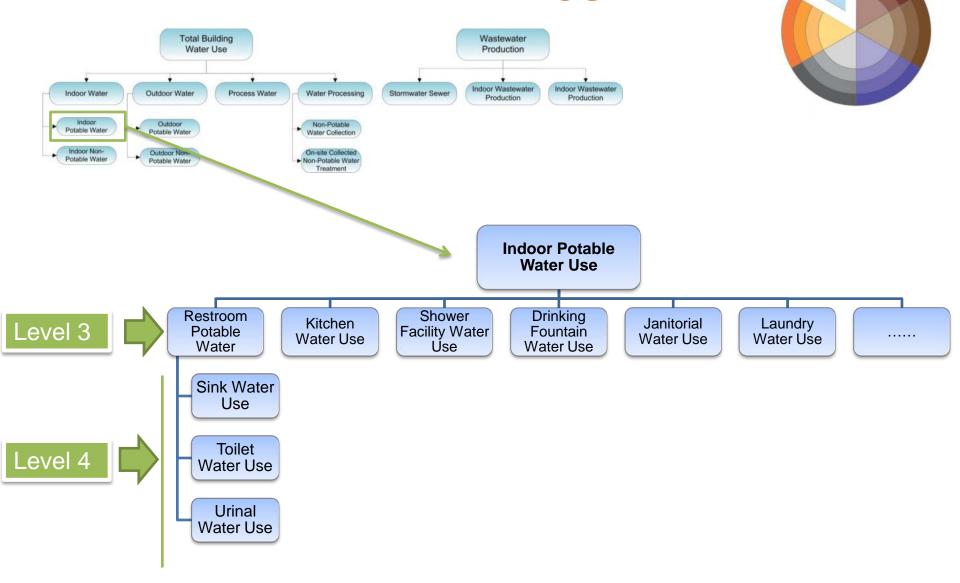
PERFORMANCE METRICS OVERVIEW

performance metrics
measure the sustainabilityrelated attributes across
primary areas of existing
building operations and costs:
energy, water, operations &
maintenance, purchasing,
waste & recycling, indoor
environmental quality, and
transportation.

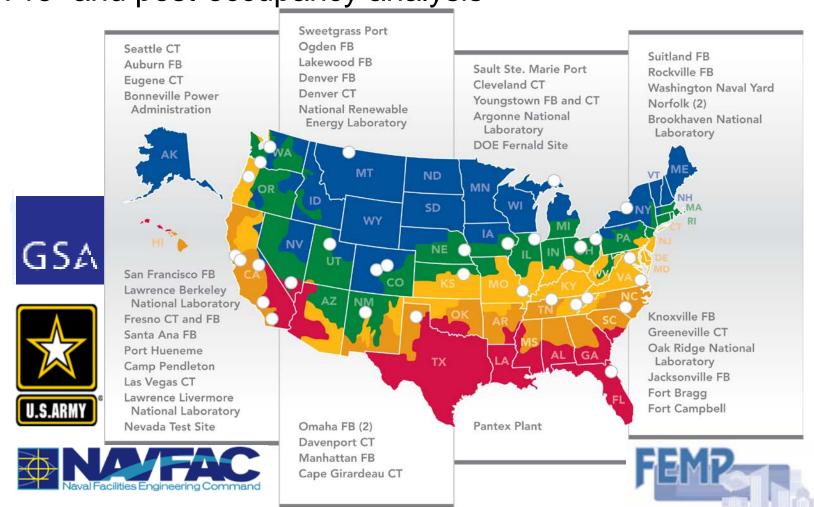
PERFORMANCE METRICS OVERVIEW


- Levels of detail
 - Informative
 - Identifying major strengths and weaknesses about the building
 - Investigative
 - Examining aspects of a building to discover which building systems are impacting performance
 - Diagnostic
 - Identifying specifically how a building system needs to change to improve performance





Wastewater Production

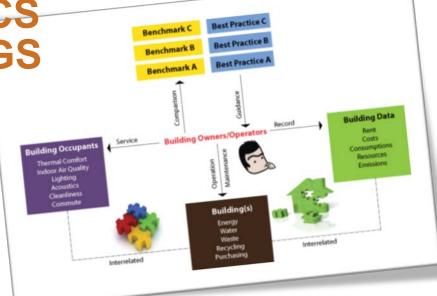


Level 1	Level 2	Level 3	Level 4	Reporting Units (IP)	Reporting Units (SI)	Typical Data Source		
Total Building	g Water Use			gal/ft ²	L/m ² , m ³ /m ²	Utility Bill		
Total Buildin	g Water Cost			cost/ft ²	cost/m ²	Utility Bill		
	Indoor Potab	ole Water Use		gal/ft², gal/occupant				
	Indoor Potab	ole Water Cost		cost/ft², cost/occupant	cost/m², cost/occupant	Utility Bill, Calculation		
		Restroom Po	otable Water Use	gal/ft², gal/occupant	L/m ² , m ³ /m ² , L/occupant, m ³ /occupant	Meter		
	-		Sink Water Use	gal/ft², gal/occupant	L/m ² , m ³ /m ² , L/occupant, m ³ /occupant	Meter		

PERFORMANCE METRICS PUBLIC SECTOR

- Green portfolio compared to industry & internal standards
- Matched pairs analysis

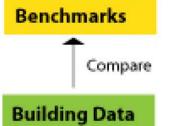
Pre- and post-occupancy analysis



PORTFOLIO ANALYSIS Example

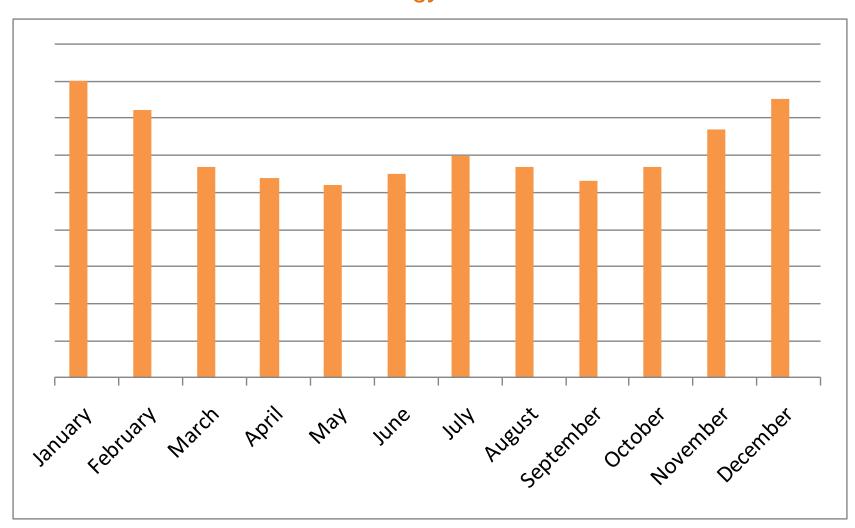
PERFORMANCE METRICS COMMERCIAL BUILDINGS

Building Occupants

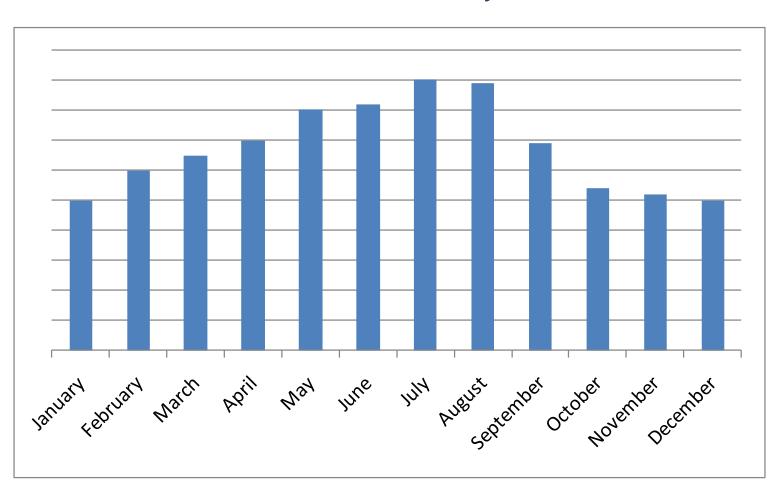

Collect Data

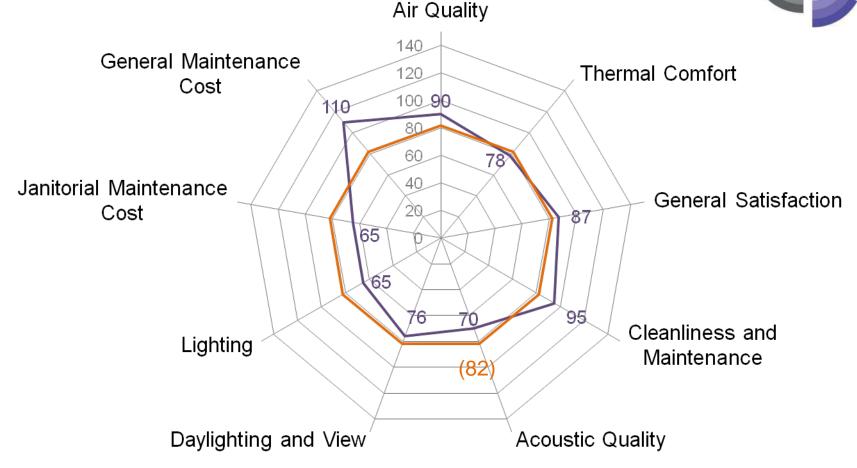
Collect Data

Collect Data

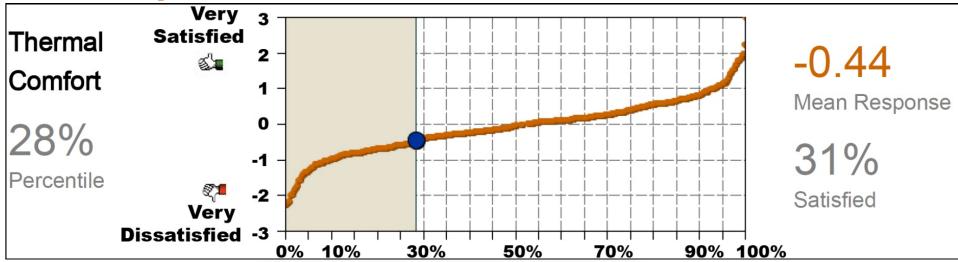


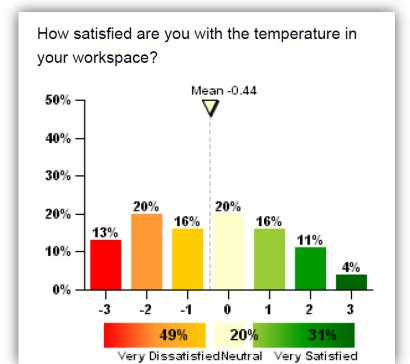
ENERGY PERFORMANCE Example


EUI = 70 & Energy Star Score = 82


WATER PERFORMANCE Example

Water use 50% below industry baseline




MAINTENANCE, OCCUPANT SATISFACTION, and ENERGY METRICS Example

—IEQ and O&M —Energy Star Score

OCCUPANT SATISFACTION METRIC Example

PILOT STUDY

- Pilot test goals
 - Clarify metrics so that they meet the needs of the commercial building sector
 - Identify metrics that are difficult to collect
 - Identify metrics that commercial building owners are willing to share with the building industry
- Volunteer's responsibilities
 - Collect building data
 - Building square footage, number of occupants, etc.
 - Utility bills
 - Employee survey re: the building & commute
 - Share the performance observations with DOE
 - Share lessons learned from data collection and analysis
- Technical assistance provided by PNNL and NREL

USER'S GUIDE

NERGY | Renewable Energy lilding Technology Program

HOW TO USE PERFORMANCE METRICS?

Step 1: Start with your questions from HERE:

Step 2: Find the metrics that you need to measure

Energy costs tend to be the largest costs associated with a building. Energy metrics cover many facets in a building. Both energy and greenhouse gas (GHG) emissions offsets are included in the metrics. Start from the Questions column and locate the metrics that will help answer your questions.

Questions	No.	Metrics	Description	Data Collection	Reporting Units	Baseline Comparison	
Is my building using more or less total energy than similar buildings?	E1	Total Building Energy Use	Total of all energy consumed at the building site	Collect and store monthly building utility data;	kBtu/ft², total & itemized by fuel type	Energy Portfolio Manager	
Can I reduce indoor energy use?	E2	Indoor Energy Use	Energy consumed for HVAC, indoor lighting, facade lighting, DHW, plug loads, people movers, and other building energy uses	Calculate annual building utility use and cost and then	kBtu/ft², total & itemized by fuel type		
Can I reduce outdoor energy use?	E3	Outdoor Energy Use*	Energy consumed for parking lot lights, walkway lighting, detached sign lighting, snow melting, landscaping, and other outdoor uses	convert data to kBtu, if the utility data is not in kBtu unit; (1kW=3.412 kBtu,	kBtu/ft², total & itemized by fuel type		
ls my energy bill higher or lower than similar buildings?	E4	Total Building Energy Cost		1 therm=100 kBtu) 3. Collection Building	cost/ft², total & itemized by fuel type	Energy Portfolio Manager	
Can I increase net rent income by reducing indoor and/or outdoor energy cost?	E5	Indoor Energy Cost		normalization factors, including gross floor area (or rentable floor area) and site	cost/site area		
	E6	Outdoor Energy Cost*		area; 4. Calculate and record utility	cost/site area		
Can costs be reduced if the peak demand is at a different time?	E7	Building Peak Demand*	Amount of power consumption necessary to supply electricity to a facility at the maximum use, usually measured over a specific short period of		kW, kW/ft²		
	E8	Building Peak Demand Cost*	time.	(Refer to Master Spreadsheet for an example)	cost/ft ²		
Is purchasing energy credits a proper way to	E9	Owner Generated Energy Production*	Total of all energy produced at the building and either used at the building or sold for use elsewhere		kWh/site area		
improve my building performance?	E10	Purchased Offsets and Cost*	Financial instrucment used to reduce greenhouse gas emissions		MTCO₂e/site area cost/site area		
Will purchasing GHG credits a proper way to	E11	Energy Offsets and Cost*	Credits issued to offset the enviornmental costs of energy needs by funding renewable energy sources elsewhere on the grid		MTCO₂e/site area cost/site area		
improve my building performance?		GHG Offsets and Cost*	Credits issued to offse the environmental costs of emissions by funding activities that offset emissions, such as reforestation and land fill		MTCO₂e/site area cost/site area		

HOW TO USE PERFORMANCE METRICS?

Sample Data Collect	tion Mast	er Spreadsh	eet: Energ	gy Met	rics																		
Francis Madrica		5	Collecting Units		5-1-	.,				Year 1		0	0.1			Annual Total		Year 2	Annual Total	Converting Factor	Data Analysis Normalization Factor	Reporting Units	Year 1 Value for comparing analysis
Energy Metrics Total Building Energy Use		Fuel Type Electricity		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		Jan .	Dec	Total	1 kWh			,
Total Building Energy Ose		· ·	kWh			15,000		18,500	23,000	33,000			12,500			254,000	<u> </u>			=3.412 kBtu	10,000	kBtu/ft²	132
		Natural Gas	Therm	500	800	300	80	0	0	0	0	0	150	350	480	2,660	<u> </u>						
		Fuel (by type)	gallon	50	60	60	100	126	253	264	237	186	86	44	68	1,534	\vdash				(GSF or RSF)		
Indoor Energy Use	-	Electricity	kWh	17,600	18,400	12,000	7,200	14,800	18,400	26,400	28,400	15,200	10,000	14,800	20,000	203,200	_			1 Therm =100 kBtu		kBtu/ft²	96
	1	Natural Gas	Therm	500	800	300	80	0	0	0	0	0	150	350	480	2,660	_			-100 KBtu	100,000		
Outdoor Energy Use*		Electricity	kWh	4,400	4,600	3,000	1,800	3,700	4,600	6,600	7,100	3,800	2,500	3,700	5,000	50,800	_				(Site Area)	kWh/site area	4
		Fuel (by type)	gallon	50	60	60	100	126	253	264	237	186	86	44	68	1,534	\perp						
Total Building Energy Cost		Electricity	\$	\$1,760	\$1,840	\$1,200	\$720	\$1,480	\$1,840	\$2,640	\$2,840	\$1,520	\$1,000	\$1,480	\$2,000	\$20,320	\perp			1 gallon diesel = 138.69 kBtu		cost/ft ²	\$2.77
		Natural Gas	\$	\$525	\$840	\$315	\$84	\$0	\$0	\$0	\$0	\$0	\$158	\$368	\$504	\$2,793	\perp			138.69 KBtu			
		Fuel (by type)	\$	\$150	\$180	\$180	\$300	\$378	\$759	\$792	\$711	\$558	\$258	\$132	\$204	\$4,602							
Indoor Energy Cost		Electricity	\$	\$1,408	\$1,472	\$960	\$576	\$1,184	\$1,472	\$2,112	\$2,272	\$1,216	\$800	\$1,184	\$1,600	\$16,256				1 gallon diesel =		cost/ft ²	\$1.90
	1	Natural Gas	\$	\$525	\$840	\$315	\$84	\$0	\$0	\$0	\$0	\$0	\$158	\$368	\$504	\$2,793				138.69 kBtu			
Outdoor Energy Cost*	E	Electricity	\$	\$352	\$368	\$240	\$144	\$296	\$368	\$528	\$568	\$304	\$200	\$296	\$400	\$4,064						cost/site area	\$0.09
	F	Fule (by ype)	\$	\$150	\$180	\$180	\$300	\$378	\$759	\$792	\$711	\$558	\$258	\$132	\$204	\$4,602							
Building Peak Demand*	E	Electricity	kW	0	0	0	0	10	12	22	12	5	0	0	0	61						kW/ft ²	0.01
Peak Demand Cost*			\$	\$0	\$0	\$0	\$0	\$200	\$240	\$440	\$240	\$100	\$0	\$0	\$0	\$1,220				1		cost/ft ²	\$0.12
Owner Generated Energy Prod	duction* E	Electricity	kWh	8,000	8000	8000	8000	8000	8000	8000	8000	8000	8000	8000	8000	96,000				1		kWh/site area	0.96
			\$	\$9,600	\$9,600	\$9,600	\$9,600	\$9,600	\$9,600	\$9,600	\$9,600	\$9,600	\$9,600	\$9,600	\$9,600	\$115,200				1		\$/site area	\$1.15
Purchased Offsets and Cost*		CO₂ equivalent	Metric ton	200	0	0	350	0	0	180	0	0	400	0	0	1,130				1		MTCO ₂ e/site	0.01
	Ī		\$	\$1,000	\$0	\$0	\$1,750	\$0	\$0	\$900	\$0	\$0	\$2,000	\$0	\$0	\$5,650				1		cost/site area	\$0.06
Energy Offsets and Cost*	t* (CO ₂ equivalent	Metric ton	0	0	0	200	0	0	0	0	0	200	0	0	400				1		MTCO₂e/site	0.00
			\$	\$0	\$0	\$0	\$800	\$0	\$0	\$0	\$0	\$0	\$800	\$0	\$0	\$1,600				1		cost/site area	\$0.02
GHG Offsets and Cost*	(CO₂ equivalent	Metric ton	200	0	0	150	0	0	180	0	0	200	0	0	730				1		MTCO₂e/site	0.01
			\$	\$1,000	\$0	\$0	\$950	\$0	\$0	\$900	\$0	\$0	\$1,200	\$0	\$0	\$4,050				1		cost/site area	\$0.04

1. Collect and store monthly building utility data over multiple years if applicable.

Collect corresponding normalization factors.

 Calculate in the reporting units and prepare data for comparison.

"Whole Building" Performance Metrics

Kim M. Fowler

Chief Research Engineer

Sustainable Design and Development

Pacific Northwest National Laboratory

Phone: 509-372-4233

Email: kim.fowler@pnl.gov

November 17th, 2010

