MassDOT-FHWA Pilot Project Report: Climate Change and Extreme Weather Vulnerability Assessments and Adaptation Options of the Central Artery

Project Team:

Kirk Bosma, P.E., Woods Hole Group, Inc. Ellen Douglas, P.E., Ph.D., UMASS-Boston Paul Kirshen, Ph.D., University of New Bampshire Katherine McArthur, MassDOT Staven Miller, MassDOT Chris Watson, M.Sc., UMASS-Boston

MassDOT-FHWA Pilot Project: Climate Change and Extreme Weather Vulnerability Assessments and Adaptation Options of the Central Artery

1

The Central Artery/Tunnel (CA/T) system is a critical link in regional transportation and a vitally important asset in the Boston metropolitan area with 160 lane miles half of them in tunnels, six interchanges, and 200 bridges.

Tip O'Neill Tunnel Exit & Entrance Ramps

Tip O'Neill Tunnel Exit & Entrance Ramps

Tip O'Neill Tunnel Exit Ramp

Vent Building 1

Vent Building 4– Detail of 15KV Electrical Conduit

2

What have we been working on?

The CA/T Pilot Project Timeline

- October 22, 2012: Superstorm Sandy makes landfall.
- November 16, 2012: MassDOT Highway convenes a Storm Awareness Meeting at the District 6 Administration Building
- January 22, 2013: MassDOT submits its proposal to evaluate the Central Artery for climate change and extreme weather events
- April 16, 2013: Notice to Proceed given to UMass Boston
- Final Report to FHWA: May 2015

High Resolution Hydrodynamic Modeling

 Includes relevant physical processes (tides, storm surge, wind, waves, wave setup, river discharge, sea level rise, future climate scenarios)

Vulnerability Assessment

While considering exposure, sensitivity, and adaptive capacity it became apparent during the IK meetings that there is a high sensitivity to flooding to almost all structures with little redundancy in the system "any water at grade is a problem".

Therefore, all structures have an equal priority

Table 5-2. The vulnerability results of non-Boat Section Structures for 2013 and 2030 flooding scenarios. "2013" indicates present vulnerability and "<2030" indicates vulnerability over the period from the just past the present to 2030.

Note: when a range of depths is shown, it means that hood depth values along the perimeter of the structure.			
Structure_ID	2013 1 %	≤ 2030 1 %	Structure Location
	Depth (ft)	Depth (ft)	
D64-DC03	0	0 to 0.3	Depot-Main Complex SMF
DOA-DC03	0	0 10 0.5	Rutherford Street Charlestown
D6D-DC01	0 to 0.5	0 to 1.5	Depot-Main Complex - 93 Granite Ave, Milton
D6D-D1-B	0 to 0.4	0.7	D6 Granite Ave Building B
D6D-D1-C	0	0.2	D6 Granite Ave Building C
HOC-D6	0	0 to 0.2	Complex HOC / ES02 / I-90 ML
			Massport Haul Road, South Boston
D6-ES02-FAC	0	0 to .03	Emergency Response Station 2
D6-SWO4-FAC	0	Flooded ^d	Storm Water Pump Station 4
TB03-D6	0 to 0.1	0.1	Complex TB03 / ERS07
			Bulfinch Triangle, East Boston
D6-TB03-FAC	0	0.1 to 0.45	Toll Facility Building Sumner Tunnel
ERS07	0	0.25 to 0.7	Emergency Response Station 7
TA03-D6	0 to 0.1	0.1 to 0.8	Complex TA03
			Havre Street, East Boston
D6-TA03-FAC	0	0.4 to 0.8	Sumner/Callahan
			Tolls/Administration/Engineering
D6-VB11-FAC	0	0 to 0.25	Vent Building 11 - Liverpool Street, East Boston
D6-VB13-FAC	0	0.05 to 0.7	Vent Building 13 - Decatur Street, East Boston
D6-VB1-FAC	0	0 to 1	Vent Building 1 - 55 Dorchester Avenue, Boston
D6-VB6-FAC	0	0.4	Vent Building 6 - 2 Fid Kennedy Drive, S. Boston
TE061W	0	0.4	Tunnel Egress 61W at VB6
MBTAAQ	0.4	0.5 to 1.5	MBTA Aquarium Station

Note: when a range of deaths is shown, it means that flood death varies along the perimeter of the structure

MBTA Aquarium Station-MBTAAQ

^a Inside (downstream) of Portal BIN62B-POR, so protected if portal protected ^b Outside (upstream) of Portal BIN7UG-POR, floods if Boat Section floods Notes:

^c See note b. Also in 2030, 1% flood, there is only minor flooding of the Boat Section. ^d Door to pump station located in boat section, south and outside of Portal 7J8-POR. Portal is flooded under 1% flood level in 2030.

Possible Regional Adaptation Strategies

Figure 6-1. Flood entry point locations that are viable sites for regional adaptations under the 2013 scenario (Milton site not shown).

Figure 6-2. Flood entry point locations that are viable sites for regional adaptations under the 2030 scenario.

MassDOT is Expanding the model to entire coast and islands:

This work will assess the vulnerability of MassDOT's transportation systems (primarily roads, bridges, and railways) along the entire Massachusetts coastline. This 2 year project has 3 main phases:

- Phase 1: Pilot-scale analysis to develop methodologies and test modeling schemes.
- Phase 2: Extension and refinement of BH-FRM to the entire coastline. The new model will be called the Massachusetts Coastline Flood Risk Model (MC-FRM) and will be used for the regional analysis.
- Phase 3: Regional scale vulnerability analysis and conceptual adaptation strategies.

